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1 The Real Spectral Theorem

In this lecture, we will prove the ”real spectral theorem” for self-adjoint operators ϕ : V →
V (so named because the eigenvalues of a self-adjoint operator are real, not because other
spectral theorems are fake!) We will show that any such operator is not only diagonalizable
(has a basis of eigenvectors) but is in fact orthogonally diagonalizable i.e., has an orthonormal
basis of eigenvectors. This gives a very convenient way of thinking about the action of
such operators. In particular, let dim(V) = n and {w1, . . . , wn} form an orthonormal basis
of eigenvectors for ϕ, with corresponding eigenvalues λ1, . . . , λn. Then for any vector v
expressible in this basis as (say) v = ∑n

i=1 ci · wi, we can think of the action of ϕ as

ϕ(v) = ϕ

(
n

∑
i=1

ci · vi

)
=

n

∑
i=1

ci · λi · wi .

Of course, we can also think of the action of ϕ in this way as long as w1, . . . , wn form a basis
(not necessarily orthonormal). However, this view is particularly useful when they form
an orthonormal basis. As we will later see, this also provides the “right” basis to think
about many matrices, such as the adjacency matrices of graphs (where such decomposi-
tions are the subject of spectral graph theory). To prove the spectral theorem, We will need
the following statement (which we’ll prove later).

Proposition 1.1 Let V be a finite-dimensional inner product space (over R or C) and let ϕ : V →
V be a self-adjoint linear operator. Then ϕ has at least one eigenvalue.

Using the above proposition, we will prove the spectral theorem below for finite dimen-
sional vector spaces. The proof below can also be made to work for Hilbert spaces (using
the axiom of choice). The above proposition, which gives the existence of an eigenvalue
is often proved differently for finite and infinite-dimensional spaces, and the proof for
infinite-dimensional Hilbert spaces requires additional conditions on the operator ϕ. We
first prove the spectral theorem assuming the above proposition.

Proposition 1.2 (Real spectral theorem) Let V be a finite-dimensional inner product space and
let ϕ : V → V be a self-adjoint linear operator. Then ϕ is orthogonally diagonalizable.
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Proof: By induction on the dimension of V. Let dim(V) = 1. Then by the previous
proposition ϕ has at least one eigenvalue, and hence at least one eigenvector, say w. Then
w/ ‖w‖ is a unit vector which forms a basis for V.

Let dim(V) = k + 1. Again, by the previous proposition ϕ has at least one eigenvector, say
w. Let W = Span ({w}) and let W⊥ = {v ∈ V | 〈v, w〉 = 0}. Check the following:

- W⊥ is a subspace of V.

- dim(W⊥) = k.

- W⊥ is invariant under ϕ i.e., ∀v ∈W⊥, ϕ(v) ∈W⊥.

Thus, we can consider the operator ϕ′ : W⊥ →W⊥ defined as

ϕ′(v) := ϕ(v) ∀v ∈W⊥ .

Then, ϕ′ is a self-adjoint (check!) operator defined on the k-dimensional space W⊥. By the
induction hypothesis, there exists an orthonormal basis {w1, . . . , wk} for W⊥ such that each
wi is an eigenvector of ϕ. Thus

{
w1, . . . , wk, w

‖w‖

}
is an orthonormal basis for V, comprising

of eigenvectors of ϕ.

2 Existence of eigenvalues

We now prove Proposition 1.1, which shows that a self-adjoint operator must have at least
one eigenvalue. Let us begin by considering an easier case, where V is an inner product
space over C. In this case we don’t need self-adjointness to guarantee an eigenvalue.

Proposition 2.1 Let V be a finite dimensional inner product space over C and let ϕ : V → V be a
linear operator. Then ϕ has at least one eigenvalue.

Proof: Let dim(V) = n. Let v ∈ V \ 0V be any non-zero vector. Consider the set of n + 1
vectors

{
v, ϕ(v), ϕ2(v), . . . , ϕn(v)

}
where ϕi(v) = ϕ(ϕi−1(v)). Since the dimension of V is

n, there must exist c0, . . . , cn ∈ C not all 0 such that

c0 · v + c1 · ϕ(v) + · · ·+ cn ϕn(v) = 0V .

For convenience, assume that cn 6= 0, otherwise we can instead consider the sum to the
largest i such that ci 6= 0. What we want to do now is to factor the expression above into a
product of degree-1 terms. This is where working over C will be useful.

Let P(x) denote the polynomial c0 + c1x + · · · + cnxn. Then the above can be written as
(P(ϕ))(v) = 0, where P(ϕ) : V → V is a linear operator defined as

P(ϕ) := c0 · id + c1 · ϕ + · · ·+ cn ϕn ,
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with id used to denote the identity operator. Since P is a degree-n polynomial over C, it can
be factored into n linear factors, and we can write P(x) = cn ∏n

i=1 (x− λi) for λ1, . . . , λn ∈
C. This means that we can write

P(ϕ) = cn(ϕ− λn · id) · · · (ϕ− λ1 · id) .

Let w0 = v and define wi = ϕ(wi−1)− λi ·wi−1 for i ∈ [n]. That is, we are working through
the computation of P(ϕ)(v) from right to left. Note that w0 = v 6= 0V and wn = P(ϕ)(v) =
0V . Let i∗ denote the largest index i such that wi 6= 0V . Then, we have

0V = wi∗+1 = ϕ(wi∗)− λi∗+1 · wi∗ .

This implies that wi∗ is an eigenvector with eigenvalue λi∗+1.

We now consider the case that V is a finite dimensional inner product space over R rather
than over C. In this case, we can no longer necessarily factor P into linear terms, but we
can factor P into linear and irreducible quadratic terms. What we now need to show is
that when we run the argument in the proof above, we hit 0 in one of the linear terms and
not one of the irreducible quadratic terms. Specifically, we want to show that we don’t
get an equation of the form 0V = ϕ2(wi∗) + bϕ(wi∗) + cwi∗ where b2 < 4c. This is where
self-adjointness comes in. In particular, we can write:

〈wi∗ , ϕ2(wi∗) + bϕ(wi∗) + cwi∗〉 = 〈wi∗ , ϕ2(wi∗)〉+ b〈wi∗ , ϕ(wi∗)〉+ c〈wi∗ , wi∗〉
= 〈ϕ(wi∗), ϕ(wi∗)〉+ b〈wi∗ , ϕ(wi∗)〉+ c〈wi∗ , wi∗〉
= ‖ϕ(wi∗)‖2 + b〈wi∗ , ϕ(wi∗)〉+ c ‖wi∗‖2

≥ ‖ϕ(wi∗)‖2 − |b| ‖wi∗‖ ‖ϕ(wi∗)‖+ c ‖wi∗‖2

=

(
‖ϕ(wi∗)‖ −

|b| ‖wi∗‖
2

)2

+

(
c− b2

4

)
‖wi∗‖2

> 0.

So, the quadratic term can’t be equal to 0.

3 Rayleigh quotients: eigenvalues as optimization

Definition 3.1 Let ϕ : V → V be a self-adjoint linear operator and v ∈ V \ {0V}. The Rayleigh
quotient of ϕ at v is defined as

Rϕ(v) :=
〈v, ϕ(v)〉
‖v‖2 .

We can equivalently writeRϕ(v) = 〈v̂, ϕ(v̂)〉 for v̂ = v/ ‖v‖.
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Proposition 3.2 Let dim(V) = n and let ϕ : V → V be a self-adjoint operator with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Then,

λ1 = max
v∈V\{0V}

Rϕ(v) and λn = min
v∈V\{0V}

Rϕ(v)

So, the unit-length vector v̂ such that ϕ applied to it has the largest projection onto itself is
the eigenvector of largest eigenvalue, and likewise the one for which ϕ applied to it has the
smallest (or most negative) projection onto itself is the eigenvector of smallest eigenvalue.

Using the above, Rayleigh quotients can be used to prove the spectral theorem for Hilbert
spaces, by showing that the above maximum1 is attained at a point in the space, and de-
fines an eigenvalue if the operator ϕ is “compact”. A proof can be found in these notes by
Paul Garrett [Gar12].

Proposition 3.3 (Courant-Fischer theorem) Let dim(V) = n and let ϕ : V → V be a self-
adjoint operator with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then,

λk = max
S⊆V

dim(S)=k

min
v∈S\{0V}

Rϕ(v) = min
S⊆V

dim(S)=n−k+1

max
v∈S\{0V}

Rϕ(v) .

Definition 3.4 Let ϕ : V → V be a self-adjoint operator. ϕ is said to be positive semidefinite if
Rϕ(v) ≥ 0 for all v 6= 0. ϕ is said to be positive definite ifRϕ(v) > 0 for all v 6= 0.

Proposition 3.5 Let ϕ : V → V be a self-adjoint linear operator. Then the following are equiva-
lent:

1. Rϕ(v) ≥ 0 for all v 6= 0.

2. All eigenvalues of ϕ are non-negative.

3. There exists α : V → V such that ϕ = α∗α.

The decomposition of a positive semidefinite operator in the form ϕ = α∗α is known as
the Cholesky decomposition of the operator. Note that if we can write ϕ as α∗α for any
α : V →W, then this in fact also shows that ϕ is self-adjoint and positive semidefinite.

1Strictly speaking, we should write sup and inf instead of max and min until we can justify that max and
min are well defined. The difference is that sup and inf are defined as limits while max and min are defined
as actual maximum and minimum values in a space, and these may not always exist while we are at looking
infinitely many values. Thus, while supx∈(0,1) x = 1, the quantity maxx∈(0,1) x does not exist. However, in
the cases we consider, the max and min will always exist (since our spaces are closed under limits) and we
will use max and min in the class to simplify things.
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